Monte Carlo Simulation of Probability Distribution of a Linear Homopolymer with k=2 Coincidences: the fBm Edwards Model

Roshin Marielle N. Britos ^{a, b}, Jinky B. Bornales ^a, Beverly V. Gemao ^a

^a Theoretical Physics Group, Department of Physics, Mindanao State University - Iligan Institute of Technology, A. Bonifacio Ave., Tibanga, 9200 Iligan City ^b Research and Extension Program, Initao College, Initao, Misamis Oriental

I. Introduction

A polymer is a macromolecule composed of repeating structural units called monomers which can be classified into heteropolymer and homopolymer. A linear homopolymer consists of the same type of monomers in a linear architecture ^[1,2]. These polymers has a significant role in many modern technology nowadays which includes semiconductor devices, medical applications, among others.

II. Methodology

The Metropolis algorithm of Monte Carlo simulation is integrated in this study in order to generate the conformation of the numbers of monomers, N and k=2 self-intersection where monomers are allowed

to intersect at least once.

	Notation
Update monomer position	d
	h
Calculate new energy	

Table 3.1: Notation and definition of parameters.	
Notation	description
d	dimension
h	Hurst parameter
	1:

In order to further understand the dynamics of a polymer, one can study its probability distribution ρ (R), which describes the size of a polymer. In this study, we will consider a linear homopolymers and use the concept of fractional Brownian motion, B^{H} , where H is the Hurst parameter to obtain the probability distribution ^[2,3].

III. Results and Discussions

Previous studies conducted shows that there are suspected outliers that stem from the polymers that did not succeed to unwind to a relaxed conformation. Due to the presence of these outliers, a simulated annealing method is incorporated to reduce and eliminate them. In this study, the linear-exponential annealing method is incorporated with varying H and N in order to reduce the presence of the outliers.

Result shows that the linear-exponential annealing method (Fig.2a,2b and 2c) has better results compared to the exponential annealing (Fig.2d). It can be observe that the probability of the end-to-end distance of a are not entangled and less to no outliers were detected.

Fig. 2: Graphs results from a, b and c are from linear-exponential annealing method; (d) shows the exponential annealing.

IV. Conclusion

The probability distribution of ρ (R) with different N and each with varying *H*, shows a good result. It also shows that the linear-exponential annealing method is better than exponential annealing method.

With the k=2 and the liner-exponential annealing method, the polymer were able to unwind and achieve an equilibrium state which is important in cosidering if the polymer is shrinking or swelling.

V. References

[1] Beleno, C. and Yau, K., Polymers, Computational Physics Project, WS 10/11

[2] Bornales, J., Bock, W., Streit, L., Self-Repelling Fractional Brownian Motion- The case of higher order self-intersections

[3] Rubenstein, M., and Colby, R., Polymer Physics, Oxford University Press (2003)

[4] Cabahug, C. Monte Carlo Simulation of Generalized Edwards Model for Polymer Chains: The Fractional (fBm) case, October 2013

[5] Baybayon, R., Monte Carlo Simulation of Flory Index and the Distribution of End-to-end Distance of a Fractional Brownian Linear Chain Homopolymer, October 2013

