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Introduction
•Feynman integrals are undoubtedly

of central importance in varied
fields of quantum physics.

•White noise analysis provides a
natural framework to generalize the
notion of such (infinite -
dimensional) integrals as one does
in the theory of generalized
functions or “distributions” [1].

• In coordinate space, the class of
exponentially-growing potentials
has been studied in the framework
of white noise analysis by Kuna, et.
al. [2].

•Phase-space white noise analysis
was first developed by Bock and
Grothaus [3, 4].

• In the present note we extend in
phase space the case of quantum
particle with potentials that are
Laplace transforms of rapidly
decreasing measures such as e.g.
the Morse potential.

The Feynman
Integrand of the
System
•The ansatz Feynman integrand in

phase space with respect to the
Gaussian measure µ as proposed in
Ref. [4],
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with m being the particle mass, h̄, the
reduced Planck’s constant, N, a
normalization, and,

x(τ) = (t− t0)ωx(τ), (2)

p(τ) = p0 +
1

t− t0
Bp(τ), t0 < τ < t;

(3)
was motivated by the Heisenberg
Uncertainty Principle, that, while the
momentum as a function of time τ is
ascertained (hence with initial value
p0 and with the Brownian fluctuation

in momentum, Bp), but the position x
is not (and thus modeled as not
having the initial value but only with
white noise, ωx).
• In our case, the potential V is given

by [2],

V(x) =
∫

Rd
eα·xdm(α). (4)

where m(α) is any complex measure
with∫

Rd
eC|α|d|m|(α) < ∞, ∀C > 0.

(5)
Example 1 V(x) = geax. Likewise, one
obtains potentials such as e.g. sinh(ax),
cosh(ax), and the Morse potential

V(x) = g
(

e−2ax− 2γe−ax
)

with g real, a, x ∈ Rd and γ > 0.
Example 2A Gaussian measure m gives
the anharmonic oscillator potentials
V(x) = gebx2

. Entire functions of
arbitrary high order of growth are also in
this class.
•Remarkably, in each case the

construction of the Feynman
integrand is perturbative.

•We formally expand the
exponential into a perturbation
series w.r. to V. This leads to
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where I0,mom is the momentum-space
free particle Feynman integrand
given by,
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 i
h̄

∫ t

t0

[
− x(τ) ṗ(τ)
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•We show that the rhs of Eq.6 defines

a generalized function of white
noise using the characterization
theorem, the corollary on Bochner
integrability, and the corollary on
convergence in the space of
Kondratiev distributions from
Refs. [1,5-7]. We do this in three
steps: for the integrand, for the
integral, and finally for the sum.

The Quantum
Propagator of the
System
•The generalized expectation of the

Feynman integrand gives the
quantum propagator of the system,
and is given by (with x′ being the
final position and p′ being the final
momentum),
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which also solves the corresponding
Schrödinger equation.

Conclusion

The phase space white noise analysis
proves useful in calculating for the
probability of finding a quantum
particle in an exponentially-growing
potential moving a certain
momentum that is conserved, with
an additional information on the
final position of the particle as
expressed in Eq. 8.
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